Towards a dynamic analysis of weighted networks in biogeography.
نویسندگان
چکیده
An improvement to the Network Analysis Method (NAM) in Biogeography based on weighted inference and dynamic exploration of sympatry networks is proposed. Intricate distributions of species result in a reticulated structure of spatial associations. Species are geographically connected through sympatry links forming an overall natural network in biogeography. Spatial records are the signals that provide evidence to infer these sympatry links in the network. Punctual data are independent of a priori area determination. NAM is oriented to detect groups of species embedded into the global network that are internally sustained by sympatric cohesiveness but weakly connected (or disconnected) to outgroup entities. These groups, called units of co-occurrence (UCs), are segregated through the iterative removal of intermediary species according to their betweenness scores. Instances of analysis of the original NAM are improved through the following changes and extensions: (i) inference of weighted sympatry networks using new measures sensitive to the strength of overlap and topological resemblance between set of points; (ii) construction of a basal network discriminating major from minor sympatry associations; (iii) evaluation of the entire process of iterative removal of intermediary species for the selection of UCs found on different subnetworks; (iv) network partitioning based on the intrinsic cohesiveness of the UCs; (v) production of a graphical tool (cleavogram) depicting the structural changes of the network along the removal process. Improvements are tested using real and hypothetical data sets. Resolution of patterns is notably increased due to a more accurate recognition of allopatric patterns and the possibility of segregating spatially overlapped UCs. As in original NAM, spatial expressions of UCs are building blocks for biogeography supported by strictly endemic and connected species through sympatry paths.
منابع مشابه
Coordinated Design of PSS and SSSC Damping Controller Considering Time Delays using Biogeography-based Optimization Algorithm
In this paper, a consistent pattern with the optimal coordinated design of PSS and SSSC controller to improve the damping of low frequency oscillations is shown. In this design, sensing and signal transmission time delays are considered as effectiveness parameters. The design problem has been considered an optimization problem and biogeography-based optimization (BBO) algorithm is used for sear...
متن کاملDesign of Instrumentation Sensor Networks for Non-Linear Dynamic Processes Using Extended Kalman Filter
This paper presents a methodology for design of instrumentation sensor networks in non-linear chemical plants. The method utilizes a robust extended Kalman filter approach to provide an efficient dynamic data reconciliation. A weighted objective function has been introduced to enable the designer to incorporate each individual process variable with its own operational importance. To enhance...
متن کاملEvaluation of Model-Based Methods in Estimating Dynamic Functional Connectivity of Brain Regions
Today, neuroscientists are interested in discovering human brain functions through brain networks. In this regard, the evaluation of dynamic changes in functional connectivity of the brain regions by using functional magnetic resonance imaging data has attracted their attention. In this paper, we focus on two model-based approaches, called the exponential weighted moving average model and the d...
متن کاملOptimizing a Fuzzy Green p-hub Centre Problem Using Opposition Biogeography Based Optimization
Hub networks have always been acriticalissue in locating health facilities. Recently, a study has been investigated by Cocking et al. (2006)in Nouna health district in Burkina Faso, Africa, with a population of approximately 275,000 people living in 290 villages served by 23 health facilities. The travel times of the population to health services become extremely high during the rainy season, s...
متن کاملAnalysis of urban land utilize by using optimization algorithm based on biogeography Case study: Semnan County
Urban land utilize planning, for optimal use of existing facilities and urban spaces is one of the main cores of urban planning, which is usually defined as a multi-objective issue. In line with the absence of specific categorization, system for land use in Iran the use of metaheuristic algorithm and artificial intelligence is required. One of the algorithms that introduced and used in recent y...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Systematic biology
دوره 61 2 شماره
صفحات -
تاریخ انتشار 2012